Airflow, gas deposition, and lesion distribution in the nasal passages.

نویسندگان

  • K T Morgan
  • T M Monticello
چکیده

The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region.

In vivo experiments have shown that nanoparticles depositing in the rat olfactory region can translocate to the brain via the olfactory nerve. Quantitative predictions of the dose delivered by inhalation to the olfactory region are needed to clarify this route of exposure and to evaluate the dose-response effects of exposure to toxic nanoparticles. Previous in vivo and in vitro studies quantifi...

متن کامل

Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially ava...

متن کامل

Computational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.

Anatomically accurate computational fluid dynamics (CFD) models of the nasal passages of an infant (6 months old, 1.3 kg) and adult (7 years old, 11.9 kg) rhesus monkey were used to predict nasal deposition of inhaled nano- and microparticles. Steady-state, inspiratory airflow simulations were conducted at flow rates equal to 100, 200 and 300% of the estimated minute volume for resting breathin...

متن کامل

Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability.

Certain inhaled chemicals, such as reactive, water-soluble gases, are readily absorbed by the nasal mucosa upon inhalation and may cause damage to the nasal epithelium. Comparisons of the spatial distribution of nasal lesions in laboratory animals exposed to formaldehyde with gas uptake rates predicted by computational models reveal that lesions usually occur in regions of the susceptible epith...

متن کامل

Active anterior rhinomanometric (AAR) evaluation of nasal airway resistance in normal Iranian sample

  Abstract:   Background: The most important and complex phenomenon of respiratory function of the nose is related to different nasal anatomy. The differences in facial anatomic structure between different races may also be reflected in nasal resistance and airflow. Caucasians has different facial anatomic structure which is the reflection of intranasal resistance or consequence of airflow. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1990